myimagelib.pivLib.piv_data¶
- class myimagelib.pivLib.piv_data(file_list, fps=50, cutoff=250)¶
Tools for PIV data downstream analysis, such as correlation, mean velocity, derivative fields, energy, enstrophy, energy spectrum, etc.
- __init__(file_list, fps=50, cutoff=250)¶
file_list: return value of readdata
Methods
__init__
(file_list[, fps, cutoff])file_list: return value of readdata
corrS1d
([mode, n, xlim, plot])Compute 2d correlation and convert to 1d.
corrS2d
([mode, n, plot])Spatial correlation of velocity field. mode -- "sample" or "full" "sample" will sample n frames to compute the correlation "full" will sample all available frames to compute the correlation (could be computationally expensive) n -- number of frames to sample.
load_stack
([cutoff])Load PIV data in 3D numpy.array.
mean_velocity
([mode, plot])Mean velocity time series.
order_parameter
(center[, mode])Compute order parameter of a velocity field.
vacf
([mode, smooth_method, smooth_window, ...])Compute averaged vacf from PIV data. This is a wrapper of function autocorr1d(), adding the averaging over all the velocity spots. Args: mode -- the averaging method, can be "direct" or "weighted". "weighted" will use mean velocity as the averaging weight, whereas "direct" uses 1. smooth_window -- window size for gaussian smoothing in time xlim -- xlim for plotting the VACF, does not affect the return value Returns: corrData -- DataFrame of (t, corrx, corry) Edit: Mar 23, 2022 -- add smoothn smoothing option Nov 15, 2022 -- Fix inconsistency with
corrLib.autocorr1d()
.