Active Nematics in Channel Networks

From bifurcations to logical gates

Zhengyang Liu, Claire Doré, Antonio Tavera-Vazquez, Teresa Lopez-Leon

Workshop Defects and Self-Organization February 22, 2023

About me

2015 - 2021 PhD University of Minnesota With Xiang Cheng

2021 - 2022 Postdoc 1 PMMH, ESPCI With Eric Clement and Anke Lindner

2022 - present Postdoc 2 Gulliver, ESPCI With Teresa Lopez-Leon

Active nematics

Active 2D nematic Low curvature interface 60X mag 15µm bar

Sanchez et al. 2012

Ramaswamy et al. 2010

Confinement

Hardoüin et al. 2020

Keber et al. 2014

Can we apply these properties to more complex tasks?

Make flow to "think"

https://www.vivaxsolutions.com/physics/allogicgates.aspx

electrical current -> Active nematic flow

Active flow networks (AFN)

Theoretical framework of AFN

H =

Key points

- 1.
- Channels: double-well potential Bifurcations: has to choose one direction (polarized state) 2.

$${
m d}m{\Phi}=-
abla H{
m d}t+\sqrt{2eta^{-1}}{
m d}m{W}_t$$
 "Brownian motion" in the energy landscape

Woodhouse et al. 2016 and 2017

AFN: channels and bifurcations

Channels

-2 + -2

0 φ₂

Flow rate measurement

Particle image velocimetry (PIV)

$$\langle Q \rangle = \frac{1}{L} \int_0^L \int_{x_1}^{x_2} v_y(x, y) \mathrm{d}x \mathrm{d}y$$

Symmetric straight channels

 Does polarized state arise? Yes, and also higher energy states with splitting flows. Not all states are equally probable.

Length effect: extra-long channel

 Does polarized state arise? Yes, and longer channel increases the probability of polarized states.

Angle effect

• Does angle matter? Yes, turning at angle is much less likely than flow straight.

Node geometry

• Does node geometry matter? We plan to investigate this.

Preliminary realization of active matter logic

Thank you!

Example data is from Jan 19, 2023, but the features are quite generic.

Why normalize?

- Long-time fluctuations in flow rate is the nature of AN
- Different samples can have drastically different overall activity

Zoom in [200, 400] (s), what happened?

Histogram in physical units, unnormalized (2 samples)

20

Require max velocity > threshold (e.g. 50 or 100)

> 50

> 100

Who's dropped?

Normalize based on thresholded flow rate (>100)

23

Visualize the averaging window size

• A smooth transition from scattered points to a elliptical contour

My interpretation of the ellipse

Choosing small averaging window size reveals an ellipse on 2D histogram. This ellipse appear because most flow rate data satisfy mass conservation. When w=1, we use the largest instantaneous absolute velocity as the normalizer. If we observe on a histogram that neither flow rates (say A, B) is 1, it implies that the other flow rate (C) is ± 1 , mass conservation enforces A, B flow rate to be on the line A+B= ± 1 , which forms two lines on the elliptical contour.

Future directions

https://www.vivaxsolutions.com/physics/allogicgates.aspx

Length effect

• Does polarized state arise? Yes, but not the same as predicted.

