Viscosity of confined bacterial suspensions

Zhengyang Liu

Co-authors: Kechun Zhang and Xiang Cheng

UNIVERSITY OF MINNESOTA

CEMS Chemical Engineering & Materials Science

Active matter is ubiquitous

©Robert Wolstenhome

Nature news, 2014

Palacci et al., Science, 2013 (Scale bar = 10 um)

E. coli suspensions as model active matter

Turner et al., J. Bacteriol., 2000 (Scale bar = 10 µm)

Suspension rheology

(Adapted by) Wagner and Brady, Physics Today, 2009

(Original) Laun, Die Angew. Makr. Chem., 1984

Bacterial suspensions have interesting rheology

 Active particles can reduce the viscosity of their suspending fluid to zero, showing "superfluid" behavior

Gachelin et al., PRL, 2013; Lopez et al., PRL, 2015

Confinement is frequently encountered

Natural

processes

Does confinement change the rheology of bacterial suspensions?

Fundamental interest

Lushi et al., PNAS, 2014

Wioland, New J. Phys., 2016

Concentration dependent dynamics

Koch et al., Annu. Rev. Fluid Mech., 2011

Microfluidic channel viscometer

Guillot et al., Langmuir, 2006; Gachelin et al., PRL, 2013

Calibration of the viscometer

- For a specific channel height, the viscosity measurements agree with the standard values
- The viscosities measured with channels of various heights agree with each other

Activity reduces viscosity

Summary

Concentration	Response to external shear	Confinement effect
Semi-dilute	Shear thickening	Reduce viscosity
Concentrated	Shear thinning	Enhance viscosity

Discussion

low concentration

The confinement effect on rheology of active matter have not been fully understood.

My results can help improve the models to better predict the rheological properties of active matter.

Acknowledgement

Group members

Dr. Shuo Guo Dr. Yi Peng Dr. Kyle Welch **Seunghwan Shin** Truong Pham Yangming Kou Ting-Pi Sun Chen Fan Shashank Kamdar

Thank you!

Thank you!

Thank you!

Outline

- Active fluid: with properties such as enhanced diffusivity and reduced viscosity, active fluids have the potential to find use in many processes including mixing, coating and printing.
- We are interested in the viscosity because it is counterintuitive and meanwhile useful.
- Efforts have been made to elucidate the shear rate dependence of viscosity for bulk active fluids.
- Confinement is common in natural context of active fluids. While confinement plays an essential role in modifying the behaviors and properties of active fluids, its effect remains lacking of experimental evidence and is not well understood.

Viscosity of semi-dilute suspensions

Swarming reduces viscosity

The vortex of bacteria effectively reduce the stress caused by the external shear

The vortex of bacteria is subject to a strong confinement, making the configuration no longer stable.

