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Relative viscosity

4. Upstream swimming

❑ Active particles reduce 

viscosity

❑ Can be turned turned into 

“superfluids”

Lopez et al., PRL, 2015

❑ Strong relative motion in confinement

Force dipole

Guillot et al., Langmuir, 2006; Gachelin et al., PRL, 2013

ℎ = 30 µ𝑚

ℎ = 128 µ𝑚

Enhanced velocity
𝑉 = 𝑉 0 + 𝑉𝑑

❑ Confinement reduces the viscosity of E. coli suspensions at low shear rates.

❑ The origin of confinement effect is an upstream swimming boundary layer of 

E. coli pushing fluid forward.

❑ With the boundary layer model, we collapse the rheology curves under 

different degrees of confinement onto a master curve. 

❑ Self-propulsion 

❑ Novel properties

Active matter

Active superfluids

Key question Different rheology under confinement?

E. Coli as active particle

2 µm

10 µm

Turner et al., J. Bacteriol., 2000 (Scale bar = 10 µm)

❑ Found in the lower intestine of warm-

blooded organisms

❑ A rod-shaped body and a long thin 

flagellum

Microfluidic viscometer

❑ Advantages :

✓ Less sample required

✓ Low viscosity measurement

✓ Allow microscopic visualization

Rheology

❑ Low shear rate

❑ High shear rate

Spatial distribution

❑ Higher concentration 

near wall

❑ Lower wall 

concentration upon 

increasing shear rate

❑ Confinement effect is 

boundary effect

Relative motion near walls
❑ Relative motion near walls, 

indicating upstream swimming

Velocity profile

ℎ = 50 µ𝑚

ℎ = 83 µ𝑚

ℎ = 30 µ𝑚

Boundary layer model Quantitative comparison with experiment
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Palacci et al., Science, 2013 
(Scale bar = 10 µm)

Enhanced flow under different degrees of confinement

Collapsing rheology curves
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✓ Plateau

✓ No confinement effect


